Reproducible One-Step Fabrication of Compact MAPbI_{3−x}Cl_x Thin Films Derived from Mixed-Lead-Halide Precursors

Dong Wang,‡ Zhihong Liu,‡ Zhongmin Zhou,† Huimin Zhu,§ Yuanyuan Zhou,⊥ Changshui Huang,† Zaiwei Wang,‡ Hongxia Xu,‡ Yizheng Jin,∥ Bin Fan,‖ Shuping Pang,*,† and Guanglei Cui*,†

†Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
§Qingdao University of Science and Technology, Qingdao 266042, P.R. China
⊥School of Engineering, Brown University, Providence, Rhode Island 02912, United States
‖Zhejiang University, Hangzhou 310027, P.R. China
¶Weihua Solar Co. Ltd., Xiamen 361115, P.R. China

ABSTRACT: Methylammonium lead trihalide perovskites are attracting intensive interest due to its high photovoltaic performance, low cost and one-step solution processability. Since the morphology of the perovskite thin films play the central role on the cell performance, a plethora of methods have been developed to fabricate uniform perovskite film. Herein, we demonstrate that an innovative approach by applying mixed lead salts (PbI_2 + PbCl_2) to facilitate reproducible fabrication of compact perovskite thin film. It is proposed that rapid reaction kinetics of PbI_2 with MAI enables preformation of perovskite within the intermediate film matrix, working as homogeneously located domains for sequential growth of the PbCl_2-derived perovskite. The as-prepared perovskite film exhibited a overall textured crystal morphology and superior compactness, which enables excellent light absorption and long-time preservation of photogenerated charge carriers and therefore exhibits 11% efficiency in planar-structured solar cells. The annealing testing shows the film also possesses very stable morphology upon long-time heating, indicative of the insensitivity of our new protocol to the preparation condition and also the promising thermal stability of its based cells. The simplicity of the one-step solution-processing and the high morphology stability of the as-prepared perovskite film endow this mixing lead salts method with feasibility of the large-scale fabrication.

1. INTRODUCTION

Methylammonium lead tri-iodide (CH_3NH_3PbI_3, MAPbI_3) emerges as a new "game-player" in the field of photovoltaic cells because of their excellent electronic properties and versatility of deposition methods.1–4 Recent progress with more than 16% power conversion efficiency (PCE) in either a mesoscopic cell or a planar heterojunction cell has been demonstrated by improving film processing and optimizing device architectures.5–9 The planar heterojunction cells, where the perovskite film is sandwiched between the hole and electron selective contacts, have simpler architecture and can be fabricated at relatively low temperature.3,10–17 To realize high-efficiency planar perovskite solar cells, it has been ambiguously shown that the morphology of the perovskite film is one of the most essential factors affecting the photovoltaic parameters.18,19 Various deposition techniques have been reported to fabricate perovskite thin films, including one-step spin-coating processing,20–22 in situ dipping method,23,24 vapor deposition,25,26 and vapor–solution hybrid deposition.27 To meet the commercial requirement of high throughput manufacturing processes, the one-step solution processing followed by thermal annealing is the most promising and universal method considering its compatibility of roll-to-roll mass production on the flexible substrate.

For typical one-step solution-processing of perovskite film, two types of precursor solutions are applied based on selection of Pb halides (PbI_2 or PbCl_2). One is using the mixture of PbI_2 and methylammonium iodide (MAI) with a mole ratio of 1:1 (denoted as PbI_2 based method here), which produce a polycrystalline MAPbI_3 perovskite film, and the other is employing PbCl_2 and MAI with a molar ratio of 1:3 (denoted as PbCl_2-based method here), which results in a highly textured MAPbI_{3−x}Cl_x perovskite film with negligible amount of chorine inclusion.28 Based on these methods, lots of efforts have been done in order to produce perovskite thin film with improved coverage which reduces detrimental contact between electron selecting layer and hole extracting layer. Such efforts include controlling the annealing conditions,18 using mixed solvents,29 adjusting the organic/inorganic component ratio13,30 adding additives in the solution,31,32 and very recently, reported solvent.
engineering, etc. Although these protocols show improvements in the film formation and the photovoltaic performance as well, reproducible fabrication of highly homogeneous and morphological stable perovskite films with a simple route beyond the laboratory scale is highly demanded.

In this study, we developed a simple one-step solution processing method by using the mixed lead salts (PbI₂ and PbCl₂ denoted as ML method) to control the crystallization process, which enabled full coverage MAPbI₃−ₓClₓ film. Note that, the formula MAPbI₃−ₓClₓ is used in this text once the chlorine is involved in the perovskite formation reaction. It is demonstrated that the rapid reaction of MAI with PbI₂ in the precursors contributes preformed perovskite crystallite domains for sequential perovskite film growth and the overall formation rate of perovskite is tailed by PbI₂:PbCl₂ ration in the precursor solution. The optimized MAPbI₃−ₓClₓ film with preferred lattice orientation and compact nature exhibits high absorption of light and long-time preservation of photogenerated charge carriers. Further, regardless of the textured crystal nature of MAPbI₃−ₓClₓ, the as-fabricated film still exhibits a stable morphology upon long-time annealing, which indicates that the present protocol is insensitive to the thermal annealing condition and such film will contribute an outstanding thermally stable photovoltaic performance.

2. EXPERIMENTAL SECTION

2.1. Material Synthesis and Characterization. MAI and TiO₂ gel were both synthesized in the lab as we previously reported. A field-emission scanning electron microscope (Hitachi S-4800) was used to acquire SEM images. X-ray diffraction (XRD) spectra were obtained from perovskite film, using a Bruker D8 advance X-ray diffractometer. An atomic force microscopy (Agilent 5400AFM) was used to analyze the surface morphology of the perovskite film. Ultraviolet spectrometer (Hitachi U-4100) was used to acquire UV spectrum. Time-resolved PL measurements were acquired using an Edinburgh Instruments FLS 920 fluorescence spectrometer. The TEM image was obtained using TEM (2100F, JEOL) operated at 200 kV accelerating voltage.

2.2. Solar Cell Fabrication and Characterization. Patterned indium–tin oxide (ITO) coated glasses were ultrasonic cleaned with deionized water, acetone, and ethanol, and dried with clean dry air. The substrate was then treated with UV/O₃ for 10 min. Subsequently, ~40 nm thick PEDOT:PSS layer was fabricated by spin-coating, followed by a heating treatment at 150 °C for 30 min in air. Then the PEDOT:PSS coated ITO substrates were transferred to a glovebox for the following device fabrication and testing. Thin MAPbI₃ perovskite layer was formed by spin-coating 40 wt % PbI₂:PbCl₂:MAI mixture in N,N-dimethylformamide (DMF), followed by a heating treatment at 100 °C for 1 h. To get a high uniform and pure MAPbI₃−ₓClₓ perovskite phase, the molar ratio of PbI₂:PbCl₂:MAI mixture was modified to 1:1:4. The thickness of the perovskite films was controlled at ~300 nm by spin coating the 40% solution at 4000 rpm. For the electron transport material, 10 mg/mL PC₆₀BM dissolved in 1,2-dichlorobenzene solution was first casted onto the perovskite film and then 40 nm thick Cao layer was evaporated on it. Finally, 80 nm Ag electrodes were deposited by thermal-evaporation to complete the solar cells. For comparison, the precursor PbI₂:PbCl₂ = 2:1 and 1:2 are also used to produce perovskite solar cells with the same condition as described above. J–V characteristics were measured (2400 Series Source Meter, Keithley Instruments) in a glovebox under simulated AM 1.5G sunlight at 100 mW/cm². The area of the perovskite solar cells were typically 0.09 cm².

3. RESULTS AND DISCUSSION

The proposed ML method was illustrated in Figure 1A. First, the mixture of PbI₂/PbCl₂/MAI with a mole ratio of 1:1:4 was spin-coated on the glass substrate and then thermally annealed at 100 °C for 1 h. Reaction 3 associated with the formation of the perovskites can be described as reaction 1 followed by reaction 2.

\[
PbI₂ + MAI \rightarrow MAPbI₃ (1)
\]

\[
PbCl₂ + 3MAI \rightarrow MAPbI₃−ₓClₓ + 2MA(g) + (2 − x)HCl(g) + xHI(g) (2)
\]

\[
MAPbI₃ + PbCl₂ + 3MAI \rightarrow 2MAPbI₃−ₓClₓ + 2MA(g) + (2 − 2x)HCl(g) + 2xHI(g) (3)
\]

It has been widely recognized that PbI₂ with MAI is more reactive than PbCl₂. Such difference in the reaction kinetics between MAI and PbI₂ or PbCl₂ could be reflected by the color evolution (illustrated in Figure 1B on the basis of the UV measurement) and their corresponding XRD characterization (Figure 1C) during the thermal annealing treatment. For the traditional PbI₂ based method, the color of the as-spun film is light brown and it changed to dark immediately in seconds when the substrate was heated at 100 °C (Reaction 1). The corresponding XRD pattern in Figure 1C(i) indicates the film has been totally converted to MAPbI₃ perovskite at the beginning stage of the thermal annealing treatment. For the traditional PbCl₂ based method, the film has been totally converted to MAPbI₃ perovskite after 80 min of thermal annealing. The XRD pattern shown in Figure 1C(ii) indicates that, at the beginning stage (2 min), perovskite phase is absent and only the
possible intermediate compound PbCl₂·xMAI exists. It took more than 45 min to form a phase-pure MAPbI₃⁻ₓClₓ perovskite film upon heating at 100 °C (Figure 1C(iii)). Although perovskite films produced from Reaction 2 generally show much improved coverage compared with Reaction 1, it turns out that the ultraslow process of reaction crystallization results in large domain formation, which is responsible for the pinhole formation.

The very distinct reaction kinetics of reactions 1 and 2 enable the possibility to engineer the perovskite formation reactions by employing both PbI₂ and PbCl₂ as inorganic precursors (Figure S1). It is expected that reaction 1 between MAI and PbI₂ can rapidly conduct, forming homogeneously dispersed MAPbI₃ perovskite crystallites in the composite film matrix. This process is assumed to complete in minutes, which is similar to the PbI₂-based method. Subsequently, upon annealing, reaction 2 becomes prominent to further grow MAPbI₃⁻ₓClₓ perovskite from or between the preformed perovskite crystallites. To unravel the formation process, the XRD pattern at 2 min heating is shown in Figure 1C(iv). The characteristic (110) peak of perovskite at 14.1° evolves at this stage, which is indicative of the preformed MAPbI₃ perovskite. The peak also appears to be more broad than that in Figure 1C(i), which implies the crystal size of the preformed perovskite crystallites from Reaction 1 is much smaller than the traditional PbI₂-based method. With the subsequent heating, the color of the film turns dark in a faster rate compared with PbCl₂-based method, reflecting that the growth of MAPbI₃⁻ₓClₓ becomes accelerated because of the presence of the preformed MAPbI₃ crystallites.

As expected, the ML film is extremely uniform and no pinholes or void defects were found (shown in Figure 2A, B). The perovskite domain size is about 200–500 nm. The HRTEM image of the ML film shown in Figure 2C indicates its good crystallinity. In comparison, the morphologies of the perovskite films prepared by the traditional PbI₂ and PbCl₂ based methods were also presented in Figure 2D, E. The PbI₂-based method with DMF as the solvent delivers a bulk dendrite-like structure (Figure 2D). Compared with the PbI₂-based method, the uniformity could be obviously improved by using the PbCl₂ based method (Figure 2E). Nevertheless, it is widely shown that the formation of such film is sensitive to the thermal annealing condition (time, temperature, etc.). This is mostly related to the highly textured film characteristic of pure PbCl₂ derived MAPbI₃⁻ₓClₓ. Promisingly, our ML-method produced thin film exhibits a void-free MAPbI₃⁻ₓClₓ film over large area with relatively less-textured characteristics.

Figure 2F is the UV–vis absorbance spectra of the perovskite films prepared by the ML, PbI₂ and PbCl₂ based methods, respectively. All these films show roughly the same absorption edge at about 780 nm as shown in Figure S2 in the Supporting Information, which represents a general feature in both MAPbI₃ and MAPbI₃⁻ₓClₓ. The absorbance of the ML film at 500 nm is two times higher than that of the PbI₂-based film and 45% higher than that of the PbCl₂-based film under the same spin-coating condition. Given the absorption coefficient of MAPbI₃ of ~1 × 10⁵ cm⁻¹ at 550 nm, it is theoretically calculated from the Beer–Lambert law A = log(1/T) that ~300 nm thick ML perovskite film is enough to effectively absorb the visible region of light spectrum.

The surface morphology of the ML perovskite film was characterized by the AFM measurement. Figure 3A is the AFM image of the top surface of the as-deposited perovskite thin film, which is similar to the SEM result in Figure 2A, B. The
local surface topography data reveals a root-mean-square (RMS) roughness (20 μm × 20 μm) of only 41 nm. Together with the cross-section image of the perovskite films (not shown here), a thickness distribution histogram is drawn in Figure 3D, showing a relatively narrow thickness distribution.

To elucidate the role of the reaction rate on the morphology of the perovskite films, we tailed the mole ratio of PbI₂ to PbCl₂. The fraction of the preformed MAPbI₃ in the matrix film could be reflected by the color of the initial film as shown in Figure S3 in the Supporting Information. Figure 4A is the SEM image of the perovskite film prepared from a 40 wt % PbI₂-PbCl₂-MAI solution in DMF with a mole ratio of PbI₂ to PbCl₂ of 2:1. The perovskite film appears to be composed of large perovskite domains with more obvious boundaries compared the sample shown in Figure 2A, B. When the fraction of the added PbCl₂ is increased, some pinholes appear in the final perovskite film, getting close to perovskite films produced from the PbCl₂-based method. The XRD patterns also show a more textured film with higher preferred orientation is produced with more fraction of PbCl₂ added, which is consistent with the corresponding crystal morphology characteristics of MAPbI₃ (from reaction 1) and MAPbI₃₋ₓClₓ (from reaction 2). Such trend reveals that the combination of reactions 1 and 2 is essential for formation of pinhole-free perovskite films.

Besides the improved uniformity, the ML method also endow the perovskite films a promising morphological stability at high temperature. It has been demonstrated that the morphology of the perovskite film by the PbCl₂-based method was very sensitive to the annealing temperature and the time. Figure 4E is the SEM image of the perovskite film on an ITO/PEDOT:PSS surface heated for 5 h in a glovebox. Compared with the sample heated at 100 °C for 1 h shown in Figure 2E, void defects becomes larger due to the rearrangement of the perovskite crystals, resulting in a relatively low coverage. However, based on the ML method, there is no obvious morphology change when the sample heated at 100 °C for 5 h as shown in Figure 4G. The enhanced morphological stability under high temperature was mostly related to the relatively less textured crystals in the void-free film. It has been widely shown that pure PbCl₂-derived MAPbI₃₋ₓClₓ perovskite films are composed of laterally grown big crystal with extremely strong texture along (110) in Figure 1C(iii). Upon long time thermal annealing, such morphology was not stable and tends to evolve to a less textured morphology to reduce its surface energy as evidenced by the evolution of the (310) peak in Figure 4F. In the ML method, because the preformed MAPbI₃ crystallites are exhibited to be randomly oriented, the final perovskite film possesses a relatively weaker lattice texture orientation as shown in Figure 1C(v) with relatively strong (310) peak intensity although the PbCl₂ are involved in the growth Reaction 2. Further increase the thermally annealing time could not change the intensity of the (310) peak of the ML film as shown in Figure 4H. The effect of the preformed MAPbI₃ crystallites on the orientation of the perovskite film was also proved when more PbI₂ were added in the precursor solution. As shown in Figure 4B, D, the more PbI₂ existed in the precursor, the stronger relative intensity of the (310) peak.

The optical characteristics of the ML film were further characterized by the steady-state PL spectrum (Figure 5A) and time-resolved PL spectrum (Figure 5B). The peak of the PL spectra of 772 nm shows negligible Stokes shift, indicative of little vibronic relaxation of the ML film. The linear fit of the PL emission edge for the pure ML film is 1.54 eV (inset in Figure 5A), which is close to the reported band gap for MAPbI₃. The time-resolved PL characterization of the ML perovskite film is shown in Figure 5B, extremely long carrier lifetimes of τ₁ = 253 ns, τ₂ = 598 ns were observed, which are comparable to the value found in MAPbI₃₋ₓClₓ. With such perovskite film, planar ITO/PEDOT:PSS/Perovskite/PCBM/C60/Ag solar cells were constructed and studied. The inset in Figure 5C illustrates the planar device structure and a cross-sectional SEM image of the solar cell device. The ~300 nm thick perovskite film appears extremely dense. The typical photovoltaic parameters of these cells measured under simulated AM 1.5 G illumination at an intensity of 100 mW cm⁻² is shown in Figure 5C. The cells exhibit an average efficiency of 11% with negligible hysteresis from both scanning directions (0.2 mV/s). Fifty cells fabricated under the same condition were made to study the reproducibility of this ML method, the efficiencies show an small relative standard derivation of ±2.2% as shown in Figure 5D.

4. CONCLUSIONS

In summary, we described an effective method to engineer the formation reaction of the perovskite by using the mixture of PbI₂ and PbCl₂ as lead precursors, which significantly enhanced film uniformity. A combination of XRD and annealing testing indicated that the as-prepared perovskite film also exhibits a dramatic morphological stability upon high temperature. We elucidate that the control over formation reaction rate by tuning the PbI₂/PbCl₂ ratio in the precursor solution plays essential role in the realization of full coverage perovskite film.
and the morphological stability. As regard to the photovoltaic performance of the resultant film, very reproducible PCEs with an average value of 11% were achieved in planar ITO/PEDOT:PSS/perovskite/PCBM/C60/Ag solar cells. The simplicity of the one-step solution processing and the high stability of the as-prepared perovskite film endow the ML protocol with feasibility of the large-scale fabrication.

ASSOCIATED CONTENT

Supporting Information
Optical images of the perovskite film heated for different time; UV–vis absorption of the perovskite films prepared by the 1–1, 1–3, and ML methods; UV–vis absorption of the perovskite films prepared by precursors contained different ratio of PbI$_2$ at different annealing stages; the parameters of solar cells fabricated by different methods. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors
*E-mail: pangsp@qibebt.ac.cn.
*E-mail: cuigl@qibebt.ac.cn.

Author Contributions
†D.W. and Z.L. contributed equally. All authors have given approval to the final version of the manuscript.

Funding
This work was financially supported by the Chinese National Natural Science Foundation (Grant 51202266, 21202178), Natural Science Foundation of Shandong Province (ZR2013FZ001), the Research Program of Qingdao (13-1-4-228-jch, 14-2-4-8-jch).

Notes
The authors declare no competing financial interest.

REFERENCES


