Enhancing Chemical Stability and Suppressing Ion Migration in CH₃NH₃PbI₃ Perovskite Solar Cells via Direct Backbone Attachment of Polyesters on Grain Boundaries

Yuchen Zhou, Yifan Yin, Xianghao Zuo, Likun Wang, Tai-De Li, Yuanyuan Zhou, Nitin P. Padture, Zhenhua Yang, Yichen Guo, Yuan Xue, Kim Kisslinger, Mircea Cotlet, Chang-Yong Nam,* and Miriam H. Rafailovich*

Cite This: Chem. Mater. 2020, 32, 5104–5117

ABSTRACT: Organic–inorganic halide perovskites feature excellent optoelectronic properties but poor chemical stability. While passivating perovskite grain boundary (GB) by polymers shows prospects on long-term performance of perovskite solar cells (PSCs), its detailed impact on the ion migration phenomenon, which largely deteriorates the PSC stability, remains less probed. Here, we introduce a new polar polymer, polycaprolactone (PCL), to passivate GBs of methylammonium lead triiodide (MAPbI₃) perovskite with only 1−2 polymer monolayers via direct backbone attachment. The PSCs with passivated MAPbI₃ using a classic but less stable Spiro-OMeTAD (2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobiﬂuorene) hole transport layer (HTL), exhibit improved power conversion efficiencies up to 20.1%, with 90% of the initial PCE being preserved after 400 h ambient storage, and 80% even after 100 h, 85 °C aging. The improved PSC stability indicates critical roles of PCL GB passivation in retarding moisture-induced decomposition and suppressing ion migration within the perovskite. Time-of-ﬂight secondary ion mass spectrometry reveals that I⁻ ions can actively migrate into the electrode, HTL, and their interface in nonpassivated PSCs, even without an externally applied electric ﬁeld, while such migration is significantly mitigated in PCL-passivated PSCs. This effective GB passivation by PCL suggests an important potential of polymer additives toward the development of stable high-performance PSCs.

INTRODUCTION

The interest in organic–inorganic halide perovskite (OIHP) materials for use in next-generation thin-film perovskite solar cells (PSCs)¹ has risen dramatically since 2009² owing to the rapid rise in the power conversion efﬁciency (PCE) of PSCs. Methylammonium lead triiodide (CH₃NH₃PbI₃ or MAPbI₃) is the most popular OIHP used in PSCs³−⁵ because of its excellent optoelectronic properties, such as high absorption coefﬁcient,⁶ wide absorption range, low exciton binding energy,⁷ long electron and hole diffusion lengths,⁸ high ambipolar charge mobilities,⁹ and extended charge carrier lifetime.¹⁰ Despite the high PCE and excellent optoelectronic properties, MAPbI₃ (MAPI)-based OIHPs suffer from poor structural and chemical stability because of the tendency of the MAPI to decompose into non-photoactive PbI₂ when exposed to environmental conditions such as ambient moisture and heat.¹¹,¹² Furthermore, the MAPI-based PSCs can undergo rapid performance degradation, especially under applied electric ﬁelds with illumination, because of ion migration and its accumulation at the device interfaces.¹³−¹⁶ These stability issues are serious obstacles that must be overcome for MAPI-based PSCs to reach their full potential.

OIHP thin ﬁlms in PSCs are invariably polycrystalline, and it is well established that the degradation of the MAPI thin ﬁlms in PSCs is mediated by the grain boundaries (GBs), which provide pathways for the rapid ingress of moisture and oxygen from the environment.¹⁷−¹⁹ Once the degradation is initiated, it can then spread to the entire grains, eventually decomposing the entire thin ﬁlm.¹²,¹⁷,¹⁸ It is also known that GBs allow fast diffusion of ionic species,²⁰−²² thus facilitating the detrimental ion migration in PSCs. One strategy to slow halide migration has been to chemically modify the perovskite by mixing halides,²³ as mixed-halide systems have displayed lower interdiffusion and migration than their single halide-based counterparts.²⁴−²⁵ While such mixed-halide systems have displayed enhanced device performance,²³ mixing halides invariably changes the perovskite bandgap, and GBs still remain.²⁶−²⁸ Another approach was devoted toward increasing the grain size and, thus, reducing the GB density in MAPI thin ﬁlms by identifying proper solvents and developing spin-casting techniques.²⁹−³² While these approaches have been effective in producing coarse-grained...
MAPI thin films, and enhancing PSC performance and stability as a result, the existing GBs still provide rapid conduits for film degradation. An alternative approach that is being developed is the passivation of the GBs by using additives to effectively retard the ingress of moisture and oxygen and ion migration.30–35 While this strategy has shown promising results, the choice of additives and the control of the associated passivation effect have been greatly limited by their solubility in the precursor solvents, such as dimethyl sulfoxide (DMSO), \(N,N\text{-dimethylformamide} (\text{DMF}),\) or \(\gamma\text{-butyrolactone.}\) This is because the additives effecting GB passivation usually need to be solubilized together with the perovskite precursors when the thin films are solution processed to ensure the uniform distribution of the additives and the smoothness of the films.

One of the main approaches under the current investigation is the addition of soluble organic polymers,12,35–44 aclass of macromolecules wherein numerous chemical architectures are available. In principle, they can be designed to provide not only hydrophobic interactions for reduced moisture adsorption at OIHP GBs but also strong binding interacting with the OIHP hydrophobic interactions for reduced moisture adsorption at macromolecules wherein numerous chemical architectures are been greatly limited by their solubility in the precursor solvents,45 its electrical properties,46,47 while at the back-contact electrodes OMeTAD, reducing its p-doped characteristics and degrading sensitive to ion (iodine) migration and aggregation into the generate high PCEs, but their performance is known to be protocols.45

One of the first uses of macromolecular additives was reported by Bi et al.,36 who incorporated commercially available poly(methyl methacrylate) (PMMA) homopolymers into the perovskite layer. Later, Zuo et al.38 reported using polymers with functional branches such as polyethyleneimine, polyvinylpyrrolidone, or polyvinyl alcohol. Both reported improvements in PCE, which were attributed to the formation of coordinating adducts between the polymers and the OIHP grains. However, the location of the polymer within the OIHP layer was not clearly identified, and the enhancement of environmental stability was not systematically demonstrated. More recently, Zong, et al.15 blended polyethylene oxide–poly(\(p\text{-phenylene oxide})\text{–polyethylene oxide (PEO–POPO–PO})\text{ co-polymers into the MAPI thin films and, using transmission electron microscopy (TEM), showed the continuous functionalization of GBs by the polymer. As a result, the PSCs made from such MAPI thin films showed not only enhanced PCE but also improved stability under continuous white light illumination and after 30-day storage in ambient air.12 Nevertheless, these studies did not discuss the effects of polymer incorporation on the ion migration, which is especially important in typical n–i–p device structures that use popular Spiro-OMeTAD (2,2′,7,7′-tetakis[\(N,N\text{-di(4-methoxyphenyl)amino}]\text{-9,9′-spirobifluorene) as the hole transport layer (HTL). These architectures can usually generate high PCEs, but their performance is known to be sensitive to ion (iodine) migration and aggregation into the HTL and at the electrode-HTL interface. At the HTL interface, the penetration of iodine ions prevents the oxidation of Spiro-OMeTAD, reducing its p-doped characteristics and degrading its electrical properties,46,47 while at the back-contact electrodes (typically made of Ag), corrosion can occur from chemical reactions between the Ag electrode and the migrated iodide ions.21,46,48 Both lead to the degradation of the photovoltaic (PV) performance of the n–i–p PSCs.

Here, we report the use of a new polymer additive, polycaprolactone (PCL), which can have strong binding interactions with perovskite GBs through unique, direct backbone attachments unlike reported polymer additives,36–38,43,44 where the polymer–perovskite interaction was realized by peripheral branch groups of polymer chains. Via this approach, we demonstrate not only an increased PCE of PSCs with enhanced open circuit voltage (\(V_{OC}\) of 1.145 V with 20.1% PCE), but also, more importantly, significantly increased combined chemical stabilities of perovskites against moisture, heat, and light, realizing the preservation of more than 90% of the initial PCE of n–i–p PSCs when exposed to moisture for 400 h and 80% of the initial PCE after the exposure to heat for roughly 100 h. The passivation of MAPI GBs by PCL was confirmed and probed using multiple complementary techniques, revealing the structure of PCL passivation of GBs and its effects on the stability and ion migration within the perovskite and its PSCs. The location of the PCL polymer on MAPI GBs was clearly visualized using high-resolution TEM, as well as the lateral force (friction mode) atomic force microscopy (AFM). Using the dynamic time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, we were able to accurately measure the decrease in iodide ion migration in the n–i–p structured PSCs by the PCL GB passivation, which largely contributes to the improved PV stability of n–i–p PSCs using Spiro-OMeTAD as an HTL.

\section*{EXPERIMENTAL SECTION}

\textbf{Materials.} PbI\(_2\) (99.99% trace metal basis) was purchased from TCI Chemicals. PCL polymer with a narrow distribution (polydispersity of 1.18) was purchased from Polymer Source, Inc. All other materials, including methylammonium iodide (MAI, anhydrous 99%), DMSO (anhydrous 99.8%), toluene, and fluorenone-doped tin oxide (FTO) (TEC 7) were purchased from Sigma-Aldrich. All chemicals were used as received without further purification.

\textbf{Fabrication of MAPI PSCs.} The FTO glasses were sonicated sequentially in ethanol, isopropanol, and acetone. The cleaned FTO glasses were then coated with 40–50 nm thick compact TiO\(_2\) (c-TiO\(_2\)) via spin-casting of its precursor solution as reported previously49 at 3000 rpm for 20 s, followed by pyrolysis at 450 °C for 2 h with 1 h cooling step afterward. An UV–ozone treatment was performed for 10 min on c-TiO\(_2\) coated substrates before casting the perovskite precursor solution. The precursor solution with a concentration of 1.2 M MAI and PbI\(_2\) (molar ratio of 1:1) was prepared by dissolving 553 mg of PbI\(_2\) and 190 mg of MAI in the mixed solvents of 0.9 mL of DMF and 0.1 mL of DMSO. Varying amounts of the PCL polymer were then dissolved into the solution after fully dissolving MAI and PbI\(_2\). All solutions (with and without PCL) were heated at 60–70 °C for 30 min to ensure a full dissolution of solids and obtain a crystal-clear solution before being spin-coated onto c-TiO\(_2\) coated FTO glass films (Figure S1). A uniform perovskite layer was fabricated by first drop-casting the perovskite precursor solution onto c-TiO\(_2\) coated FTO glass followed by spin-drying at 4000 rpm for 30 s. Immediately after 10 s of spinning, 150 μL of toluene was added onto the rotating substrate surface as an antisolvent. The precursor-coated FTO glass substrate was then transferred to a hot plate for annealing at 100 °C for 10 min to finally form a brownish-black MAPI layer with a highly smooth surface. To prepare the HTL, a Spiro-OMeTAD solution with additives was first prepared by dissolving 80 mg of Spiro-OMeTAD, 20 μL of 500 mg/mL stock solution of Littler(bis(trifluoromethanesulfonyl)imide (LiTFSI) in acetonitrile, and 30 μL of 4-tet-butlypyridine (tBP) in 1 mL of chlorobenzene. The hole-conductive Spiro-OMeTAD layer was then coated onto the MAPI perovskite surface via spin-casting at 4000 rpm for 30 s. Finally, 60 nm thick Au electrodes were deposited onto the Spiro-OMeTAD surface via electron beam evaporation through a shadow mask.

\textbf{Structure Characterizations.} The surface and grain structure of MAPI films were characterized by scanning electron microscopy (SEM, Hitachi S-4800) at an acceleration voltage of 2 kV. The friction information of the surface of MAPI thin films with and without the PCL
polymer was acquired by the contact-mode AFM (Bruker Dimension 3000). X-ray diffraction (XRD, Rigaku Ultima III) was used to characterize the crystal structure of thin film MAPI perovskites by using the Bragg–Brentano geometry with a 2θ range from 10 to 40°, sampling width of 0.04°, and scan rate of 3°/min under operation conditions of 44 kV and 40 mA. Detailed atomic-scale grain structures of MAPI thin films were examined by TEM (JOEL 1400 with acceleration voltage of 80 kV and FEI Talos with acceleration voltage of 200 kV). TEM samples were prepared by spin-casting the diluted perovskite precursor solution onto holey carbon TEM grids, which were then annealed at 100 °C for 10 min. This sample preparation method may avoid the damage of the samples from other methods, such as focused ion beam preparation, and provide reliable characterization results.50 Chemical characteristics of perovskite samples were characterized by attenuated total reflectance−Fourier transform infrared spectroscopy (ATR−FTIR, Thermo, Nicolet 6700), polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS, home-built), and X-ray photoemission spectroscopy (XPS, Physical Electronics VersaProbe II). For ATR−FTIR, powders were prepared by scraping perovskite films off from 3 substrates, and FTIR spectra were recorded in transmittance mode. For PM-IRRAS, the samples were prepared by spin-casting perovskite films onto the Au-coated Si substrate. XPS was performed using Al Kα X-ray, 45° take-off angle, and low-energy electron and Ar+ surface charge compensation, under an ultra-high vacuum of 5 × 10^{-7} to 5 × 10^{-8} Pa, with 117.40 eV pass energy for high resolution and 29.35 eV for survey spectra. The binding energy of the main C 1s peak at 284.8 eV (C−C or C−H) was used to correct the spectral shift caused by specimen surface charging.

Optical Property Characterizations. UV−visible absorption spectra of the perovskite thin films were obtained by using a UV−visible spectrophotometer (model Cary 60, Agilent, USA) with the scan range from 400 to 800 nm and a scan rate of 1000 nm/min. Steady-state photoluminescence (PL) of perovskite thin films were measured using a Fluorolog-Horiba fluorometer. Time-resolved PL experiments were performed using the time-correlated single photon counting spectroscopy by exciting the perovskite samples deposited on the c-TiO2/glass substrate. The excitation wavelength for both steady-state and time-resolved PL was at 570 nm.

PV Performance Measurements. The PV performance of fabricated MAPI solar cells was tested by a modified PV probe station equipped with a 150 W solar simulator (Oriel, USA) with a air mass 1.5 global (AM1.5G) filter and precision semiconductor parameter analyzer (Agilent). The light intensity was calibrated to 100 mW cm^-2 (1 sun) by a calibrated Si solar cell (Oriel) before each measurement. Current density−voltage (J−V) characteristics of devices with an active area of 0.12 cm^2 were recorded under illumination at a scan rate of 100 mV/s between 1.2 and 0 V. All as-prepared devices were kept in dry air (with desiccant) for the overnight oxidation of the Spiro-OMeTAD layer before measurements. Steady-state PCE measurements were carried out by recording the current
output of devices at the bias for the maximum power point with continuous 1 sun illumination for 120 s. External quantum efficiency (EQE) measurements were conducted using a home-built EQE setup composed of a 300 W xenon lamp (Oriel) and a monochromator (Oriel) attached to the PV probe station. All the PV measurements were performed in ambient air.

Stability Measurements. The chemical stability of PCL incorporated MAPI films were tested under several environmental stresses, including moisture, heat, and light, with all tested films prepared on c-TiO2-coated FTO glass to emulate the actual PSC conditions. Specifically, the films were directly exposed to air with relative humidity (RH) around 70% for 24 h for the moisture stability test. To test the ability against extreme heat, the samples were heated at 100 °C in an Ar-filled atmosphere for 3 h. For the light stability experiment, a thin (50 nm) layer of PMMA was first spin-casted onto MAPI films to minimize the influence of other environmental factors. Then, light with AM1.5G 1 sun intensity was illuminated on the films for 20 h. The changes of the crystal structure in the films before and after the imposed environmental stresses were examined by XRD. The PCE stability of MAPI–PCL PSCs were tested by storing devices in air (dark, room temperature) with a controlled RH of 20 °C after the imposed environmental stresses were examined by XRD. The smaller crystallite size compared with the apparent grain size suggests that each apparent grain observed in SEM contains multiple crystallites. It is noted that the PCL additive in MAPI films supports the increased nucleation of perovskite crystallites even without an antisolvent process as indicated by the increased perovskite film substrate coverage with the incorporation of PCL (Figure S2). Overall, these observations suggest that PCL does not affect the crystal structure of the perovskite but provides loci for increased heterogeneous nucleation of crystallites.

The surface coverage and roughness of perovskite films on substrates, which can be affected by process additives, are important factors influencing PSC performances. We find that the incorporation of PCL in MAPI ensures a good perovskite film coverage on substrates as PCL promotes heterogenous nucleation of MAPI crystallites throughout the substrate. Moreover, under all tested incorporated PCL concentrations, MAPI thin films maintained the original, smooth, compact, and pinhole-free surface morphology without any visible polymer aggregation even at the highest concentrations studied (10 mg/mL), hinting good chemical affinity between the PCL and perovskite, which we confirm by more detailed studies of the chemical interaction in the later section. Consistently, the Young’s contact angle (θ) formed when a droplet of PCL was molten on a pristine MAPI perovskite thin film in vacuum (Figure 1J) is relatively small (θ = 25.94°), indicating partial wetting of PCL on the MAPI perovskite surface and suggesting a possibility of the polymer being “wicked” into the intergranular channels during the nucleation and growth of MAPI crystallites and grains, thus passivating the perovskite GBs.

Chemical Interaction between the PCL Polymer and MAPI Perovskite. We investigated the chemical interaction between PCL and MAPI by comparing the molecular vibronic characteristics of PCL, pristine MAPI, and PCL-incorporated MAPI (2 mg/mL PCL) perovskite powder samples using ATR-FTIR (Figure 2). The primary “fingerprint” peak of PCL is located at 1720 cm⁻¹ originating from the stretching of the C=O bond, while the broad peaks at 3168 and 3129 cm⁻¹ associated with N–H stretching from MAPI are prominent for the pristine MAPI (Figure 2A). The PCL-incorporated MAPI features both the peaks from PCL and MAPI (Figure 2A), showing an apparent successful incorporation of PCL within the perovskite layer. Higher resolution spectra around the C=O stretching peak reveal more details of the chemical interaction between PCL and MAPI; after being mixed with MAPI, the C=O peak from PCL undergoes a blue shift from 1720 cm⁻¹ to a higher wavenumber of 1725 cm⁻¹ and broadening (Figure 2B). This is consistent with previous studies, which attributed these spectral changes to the coordination between C=O and Pb₂⁺ via the electron donor (C=O)–acceptor (Pb₂⁺) pair (i.e., Lewis acid–base adduct) formation. A separate ATR–FTIR characterization of PCL, pristine PbI₂, and PCL-incorporated PbI₂ exhibited a similar blue shift of C=O vibration from 1720 to 1728 cm⁻¹ (Figure 2C,D), further supporting the case of the chemical coordination between the PCL polymer and MAPI via the adduct formation between the C=O functional group of PCL and the Pb₂⁺ of PbI₂ within the MAPI perovskite.

RESULTS AND DISCUSSION

Microstructure of PCL-Incorporated MAPI Perovskite. PCL-passivated MAPI perovskite thin films were prepared by the one-step spin casting procedure using a mixed solution containing MAL, PbI₂, and PCL polymer (as described in Supporting Information; Figure S1). Figure 1A–F shows SEM micrographs of the MAPI perovskite thin film with various concentration of incorporated PCL. The image analysis indicates that the average apparent grain size gradually decreases with increasing PCL concentration, from ∼200 nm (pure MAPI) to 100 nm (10 mg/mL PCL), accompanied by a narrowed size distribution (Figure 1G). The crystal structure of perovskite thin films examined by XRD confirms that regardless of the amount of PCL, all samples exhibit a tetragonal structure typical to MAPI perovskites (Figure 1H). Meanwhile, a Debye–Scherrer analysis of full-width-at-half-maxima of crystalline XRD peaks shows that the crystallite size remains relatively constant at ∼50 nm with increasing PCL concentration despite the decreasing apparent grain size observed in SEM (Figure 1I). The smaller crystallite size compared with the apparent grain size suggests that each apparent grain observed in SEM contains multiple crystallites. The impact of PCL on the ion transport characteristics within the perovskite layer was examined by measuring the temperature-dependent current at 800 °C via ToF-SIMS (PHI TRIFT V nano ToF-SIMS). ToF-SIMS was performed on PSCs with the Au or Ag electrode after storing them under Ar for 48 h period and after additional thermal aging at 85 °C. The depth profiles of elements or ions of interest (e.g., Au, Ag, F, C, Pb) was measured by sputtering the perovskite film using 5 kV Ar gas gun (500 nA current, rastered over 800 μm × 800 μm area) and in sequence probing the composition of the exposed surface by using a 30 kV Bi⁺ liquid metal ion gun (LMIG) and analyzing sputtered secondary ions across 300 μm × 300 μm area. For each sputter–probe cycle, samples were sputtered for 5 or 10 s before probing ions.

Charge Transport Activation Energy Measurement. The impact of PCL on the ion transport characteristics within the perovskite layer was examined by measuring the composition depth profile via ToF-SIMS (PHI TRIFT V nano ToF-SIMS): ToF-SIMS was performed on PSCs with the Au or Ag electrode after storing them under Ar for 48 h period and after additional thermal aging at 85 °C. The depth profiles of elements or ions of interest (e.g., Au, Ag, F, C, Pb) was measured by sputtering the perovskite film using 5 kV Ar gas gun (500 nA current, rastered over 800 μm × 800 μm area) and in sequence probing the composition of the exposed surface by using a 30 kV Bi⁺ liquid metal ion gun (LMIG) and analyzing sputtered secondary ions across 300 μm × 300 μm area. For each sputter–probe cycle, samples were sputtered for 5 or 10 s before probing ions.
Suggested notion of perovskite GB passivation by PCL was substrate interface. Macroscale segregation of PCL occurs at the perovskite/bottom interface. In fact, we found that there was no sign of PCL-related spectral features in the FTIR spectra of PbI₂ mixed with PCL (red) compared with pure PbI₂ (black) and PCL (blue). (C,D) ATR FTIR spectra of PbI₂ mixed with PCL (red) compared with pristine MAPI (black) and PCL (blue). (E) XPS spectra for Pb 4f of MAPI with (red) and without (black) PCL passivation. The presence of PCL at the GB regions was further revealed in detail by TEM (Figure 3D,E): The perovskite GBs without incorporated PCL appears faint with some apparent defects created by the high-energy electron beam (Figure 3D), but the PCL-passivated GBs (2 mg/mL PCL) display distinct light-colored regions between darker crystal grains, suggesting that the PCL polymer fills the entire region of GBs. High-resolution TEM (HRTEM) lattice imaging focusing on the GB regions with a higher magnification clearly shows that while no obvious amorphous region is observed at the boundaries of the highly crystalline perovskite grains in the pure MAPI sample (Figure 3F), the amorphous regions were highly visible at the intergranular areas in the PCL-incorporated MAPI sample (Figure 3G). Considering the intrinsically amorphous nature of the PCL polymer (Figure S6), the results confirm the distribution of the PCL at the GBs of the perovskite films, as opposed to the formation of large independent aggregated polymer domains. Meanwhile, the lattice planes visible within the highly crystalline grains (Figure 3F,G) are identified as (220) and (310) planes of the tetragonal MAPI structure in both passivated and nonpassivated samples. It is noted that the passivation of perovskite GBs by PCL was consistently observed in other low and high PCL concentrations as well (1 and 4 mg/mL; Figure S7). These results prove that the dispersion of PCL occurs mainly at the intergranular regions between the MAPI perovskite grains as an ultrathin polymer coating on the grain surface, suggesting that the PCL added in MAPI is primarily passivating the perovskite GBs to provide a beneficial barrier against moisture and ion migration.

Perovskite GBs Passivation by the PCL Polymer. The suggested notion of perovskite GB passivation by PCL was corroborated by identifying the distribution of PCL in the intergranular area between perovskite grains via the lateral scanning force AFM: the topographical AFM micrographs of MAPI thin films without and with PCL (2 mg/mL) showed similar surface morphologies (Figure 3A,B), while the lateral-force micrographs featured distinctly softer areas (i.e., higher voltage in the micrograph scale) at the GBs only in the samples containing PCL (Figures 3A,B and S5). Consistently, in the line profiles of the lateral-force AFM scan obtained from the marked lines on Figure 3A,B, the distinct peaks corresponding to the softer medium were evident at the GBs in the samples containing PCL while a relatively flat profile was observed for the pure MAPI without PCL (Figure 3C). This result provides evidence of the dispersion of the softer PCL polymer primarily at the perovskite GBs. Meanwhile, it is noted that the friction-mode AFM data does not exclude the possibility of the presence of the ultrathin PCL passivation layer on the exposed top grain surface, which should be, again, beneficial for protecting MAPI grains against moisture and ion migration.1,21,22,66

Meanwhile, XPS measurements show a red shift of the binding energy of the Pb 4f orbital in the MAPI perovskite thin film upon the incorporation of PCL (Figure 2E), while those for C 1s, N 1s, and I 3d orbitals remained unchanged (Figure S3), again confirming the strong interaction between the PCL and MAPI perovskite through Pb₂⁺.

Generally, when the polymer is blended in a thin film medium, it can be phase-separated and segregated at the top and/or bottom interfaces with air and substrates driven by the interfacial energy. To determine whether such an unfavorable interfacial macrosegregation of the polymer occurs in the PCL-incorporated MAPI perovskite thin film, the PCL-containing MAPI thin film (2 mg/mL PCL) prepared on a Au-coated Si substrate was subjected to the PM-IRRAS analysis, which primarily probes the molecular vibration of thin films in close proximity to the bottom substrate interface.64,65 In fact, we find that there was no sign of PCL-related spectral features in the obtained PM-IRRAS data (Figure S4), suggesting that negligible macroscale segregation of PCL occurs at the perovskite/bottom substrate interface.

The consideration of the polymer radius of gyration (Rg) indicates that the observed PCL GB passivation thickness for 2 mg/mL of PCL concentration corresponds to 1–2 polymer monolayers: We estimated that Rg of our PCL is ca. 1.77 nm at the unperturbed condition (see Supporting Information; page S9), indicating that the thickness of an unperturbed PCL monolayer would be ca. 3.54 nm (i.e., 2Rg). Because of the geometrical confinement effect caused by the smaller GB channel width (~1.5–3.5 nm, Figure 3G) than 2Rg, the linear polymer chain is expected to have a flattened conformation, essentially reducing Rg along the plane-normal direction of the grain surface (Figure 4). In this case, only ~1–2 monolayers of the stretched PCL macromolecules are estimated to fill the GBs, effectively passivating the grains while minimizing the inter-grain charge transport. This horizontally stretched...
chain conformation along the grain surface is expected to facilitate the PCL backbones to more closely interact with the grain surface, enabling the direct backbone attachment to the MAPI grain, mediated by the backbone C=O group in the PCL chain (Figure 4).

Overall, we postulate that the formation of the PCL GB passivation layer follows the following steps. First, during the initial growth of perovskite crystallites, some PCL is expected to act as heterogeneous nuclei. As the MAPI grains grow, the majority of the polymer is now being populated in the narrowing intergranular region between the growing MAPI crystallites because of its good affinity and ability to coordinate with MAPI surfaces. At the same time, the polymer chains are stretched because of the confinement effect and subsequently flattened chain conformation. These in turn enable the PCL polymer to be distributed uniformly along the MAPI GBs throughout the film interior without forming the macrosegregation at the bottom and top MAPI film interfaces. Compared with other polymer additives reported previously wherein long, side branch groups were responsible for the interaction with the MAPI grain, the strong, direct attachment of the PCL chain backbone to the perovskite, realized via the adduct formation between the C=O on ester groups of the stretched PCL backbone and Pb atom in MAPI, minimizes the possible polymer steric hindrance and thus promotes a much closer attachment of the PCL backbone onto the MAPI grains, providing a more effective passivation of the MAPI grain surface and, eventually, significantly improved performance and environmental stabilities of MAPI perovskites and PSCs as we show next.

Optical Properties and PV Performance of PCL Passivated MAPI and PSCs. We first conducted steady-state PL measurements to determine the effect of the PCL additive on the radiative recombination characteristics of the photoexcited charge carriers in the MAPI thin film. The pristine and PCL-added (2 mg/mL) MAPI thin films with nominally identical
thicknesses were used, which were confirmed by the nearly identical ultraviolet (UV)–visible absorption spectra obtained from both samples, especially at the wavelengths above 500 nm (Figure 5A). Despite a similar film thickness, the PL data show that the emission intensity in the sample with the PCL GB passivation was increased by nearly 70% compared with that from the nonpassivated, pristine MAPI film (Figure 5A), providing clear evidence that the nonradiative recombination associated with defects and traps originating from the MAPI GB region has been effectively suppressed by the addition of the PCL polymer. Simultaneously, the PL spectra did not show any noticeable change in the peak position, indicating that the PCL passivation via the Lewis acid–base adduct formation with MAPI did not alter the optical bandgap of MAPI perovskites.

The recombination dynamics of photoexcited charge carriers, examined by the time-resolved PL measurement, shows significantly prolonged charge carrier lifetimes in the MAPI perovskite upon the incorporation of PCL. The temporal PL decay characteristics (at an emission peak of 765 nm) of the PCL-passivated and pristine MAPI perovskites (Figure 5B) were analyzed by the biexponential decay model with fast and slow components having time constants of \(\tau_1 \) and \(\tau_2 \), respectively. The faster decay component (typically, \(\tau_1 < \sim 20 \text{ ns} \)) is generally attributed to the trapping of charge carriers in defect states while the slower decay components (\(\tau_2 > \sim 20 \text{ ns} \)) to the direct bimolecular radiative recombination in the bulk.35,69 We find that both time constants were rendered significantly longer in the PCL-passivated MAPI than in the nonpassivated counterpart; with the addition of PCL, \(\tau_1 \) increased from 5.6 to 8.1 ns and \(\tau_2 \) from 69.5 to 130.7 ns, with the average lifetime (\(\tau_{\text{avg}} \)) increasing from 54.7 to 97.0 ns (Figure 5B inset and Table S1), signifying far fewer charge trapping sites and an overall much improved quality of the MAPI film enabled by the effective PCL passivation of the MAPI perovskite GB, thus subsequently leading to improved optoelectronic properties of the MAPI perovskite thin film.

We evaluated the PV performance of PCL-passivated MAPI perovskites and found a significant improvement of PCE primarily driven by enhanced \(V_{\text{OC}} \). We used the \(n-i-p \) planar PSC architecture consisting of, from top to bottom, Au/Spiro-OMeTAD/MAPI (with or without PCL)/c-TiO\(_2\)/FTO in which Spiro-OMeTAD and c-TiO\(_2\) served as the HTL and electron transport layer (ETL), respectively (Figure 5C). The illuminated \(J-V \) characteristics of champion PSCs made with or without a PCL polymer additive (2 mg/mL), measured under a simulated solar illumination (AM1.5G, 1 sun), are provided in Figure 5D. The corresponding PV performance parameters (Figure 5D inset) revealed that the reference MAPI PSC without PCL had a PCE of 17.5% with a short circuit density (\(J_{\text{SC}} \)) of 22.93 mA/cm\(^2\), \(V_{\text{OC}} \) of 1.055 V, and fill factor (FF) of 0.722. Significantly, once PCL was incorporated, PCE was enhanced to 20.1% with \(J_{\text{SC}} \), \(V_{\text{OC}} \), and FF all also increased to 23.75 mA/cm\(^2\), 1.145 V, and 0.738, respectively, among which the extent of \(V_{\text{OC}} \) enhancement being the most pronounced. The significantly increased \(V_{\text{OC}} \) can be generally ascribed to a commensurately suppressed charge carrier recombination,12,32,70 which is consistent with the prolonged charge carrier lifetime revealed by the time-resolved PL measurement, highlighting the importance of effective defect passivation of GBs and improved grain quality in the active MAPI perovskite.
layer for achieving an improved PV performance. The relatively minor, yet appreciable increases of J_{SC} and FF can be also understood in the same manner via the reduced charge carrier recombination enabled by the efficient passivation of defect-concentrated GBs by PCL, which significantly reduces the charge trap density and prevents the recombination loss of photogenerated charge carriers.

In order to provide detailed information on the effect of the PCL additive concentration on the PV performance of MAPI PSCs, we built devices by using MAPI layers with varying concentrations of incorporated PCL, from 0 mg/mL (reference), 1 mg/mL, 2 mg/mL, and to 4 mg/mL. The device using the least PCL (1 mg/mL) showed the best PCE of 18.4% (average: 17.7 ± 0.7%), which is higher than that of the reference MAPI devices without PCL incorporation (highest: 17.5%, average: 16.5 ± 0.6%), but lower than the 20.1% champion PCE (average: 18.9 ± 0.7%) of the optimally PCL-passivated MAPI PSCs (2 mg/mL) (Figure S8 and Table S2). J_{SC}, V_{OC}, and FF all also exhibited a similar PCL-concentration dependence as PCE (Figure S8 and Table S2). Meanwhile, the further increased PCL concentration to 4 mg/mL rather adversely affected the PV performance, with the best device PCE now being reduced to 16.0% (average: 14.9 ± 1.0%), even lower than that of the reference MAPI device without PCL, along with the decreased corresponding J_{SC}, V_{OC} and FF values as well (Figure S8 and Table S2). This likely results from an excessive PCL aggregation along MAPI GBs, which insulates the charge carrier transport and increases the resistance of the active MAPI layer.

The improved PCE of MAPI PSCs by the PCL passivation was accompanied by similar increases in the steady-state PCE and EQE. Steady-state PCE was measured by subjecting devices to the bias voltage corresponding to the maximum power point (V_{mpp}) in the illuminated $J-V$ characteristics under AM1.5 G 1 Sun illumination and monitoring the corresponding J outputs (J_{mpp}) over a 2 min period. Steady-state PCE and J_{mpp} of MAPI PSCs with and without PCL passivation (2 mg/mL) are plotted in Figure 5E. A stabilized PCE of 19.41% ($J_{mpp} = 20.87$ mA/cm2) was reached upon the illumination of the PCL-passivated MAPI PSC, as opposed to a PCE of 16.69% (20.36 mA/cm2) in the reference MAPI PSC without PCL (Figure 5E). We note that the stabilized PCE values were somewhat lower than those directly extracted from the $J-V$ characteristics. Nevertheless, the results highlight the enhancement of PCE in MAPI PSCs enabled by the PCL GB passivation.

Similarly, the PCL passivation improved the overall EQE of the MAPI PSC, but, more significantly in the shorter wavelength region (Figure 5F). Given the nearly identical optical absorption between pristine and PCL-passivated MAPI perovskites in the wavelength range longer than 550 nm (Figure 5A), the improved EQE of the passivated PSC in this longer wavelength range reflects the improvement of the perovskite grain quality with reduced trap densities and suppressed nonradiative recombination. In the nonpassivated PSC, the presence of mid-gap trap states, likely originating from uncoordinated dangling bonds at the GBs, induces the recombination before their collections, resulting in the reduced number of collected free charge carriers per absorbed photons (i.e., reduced EQE). On the other hand, the increase of EQE at shorter wavelengths (<500 nm) by the PCL passivation is more likely related to the enhanced light absorption in that particular wavelength range as shown in Figure 5A. While the exact origin of this improved light absorption in the shorter wavelength range needs further investigation, we speculate that because of the lower relative dielectric constant (~3) of the polymer than that of the MAPI perovskite (~25.7), the PCL passivation at GBs might increase the dielectric contrast between MAPI grains and enhance the Rayleigh scattering, whose intensity ($I_{Rayleigh}$)
increases with decreasing wavelength (λ) following $I_{\text{Rayleigh}} \sim \lambda^{-4}$ relation, and thus increasing the overall optical absorption of the MAPI film. Overall, the J_{SC} estimated by integrating the EQE spectrum over the standard AM1.5G solar spectrum reached 21.85 mA/cm2 in the PCL-passivated MAPI device as compared with 20.73 mA/cm2 of the reference device without PCL (Figure 5F), both of which being slightly lower (<10%) than the values directly extracted from $J-V$ characteristics but largely consistent in the trend.

We note that the difference between the measured and integrated J_{SC} indicates the existence of the hysteresis in the PV $J-V$ characteristics, which mainly result from the planar structure of our devices without the mesoporous ETL layer. However, the hysteresis was found to be reduced by the PCL passivation, based on the hysteresis index (HI) calculated from the measured reverse and forward $J-V$ scans, respectively. No matter what percent of V_{OC} was chosen for the calculation, the results all showed the reduction of HI (from 0.146 to 0.041 for 0.5 V_{OC} and from 0.386 to 0.133 for 0.8 V_{OC}) after the PCL passivation. The attenuated hysteresis can be largely attributed to the reduced charge trap densities as well as the anticipated suppression of ion migration in our PSCs by the PCL passivation.

In the next section, we demonstrate that this enhanced PCE is accompanied by significantly improved performance stabilities and, more importantly, suppression of ion migration under environmental stresses, which we understand are enabled by the suggested unique, direct backbone attachment of PCL polymer chains on MAPI GBs.

Improvement of Chemical Stability. The chemical stabilities of PCL-incorporated MAPI thin films (2 mg/mL)
have been evaluated and compared with pristine MAPI thin films under various controlled, continuous environmental stresses, including moisture, heat, and light by monitoring the responding structural evolutions using XRD. The humidity stability (at RH ~ 70% and room temperature) tested over a 24 h period shows that there is a clear growth of the PbI₂ crystal in the pristine MAPI as evidenced by the increase of the PbI₂ (110) peak intensity, indicating the expected and well-documented degradation of MAPI under the extensive exposure to moisture.\(^{12,33,35,76-78}\) (Figures 6A and S10). On the other hand, no obvious PbI₂ structure has been found in the PCL-incorporated MAPI even after 24 h of exposure, highlighting the excellent moisture repelling ability of the PCL-passivated MAPI sample (Figures 6A and S10). Likewise, the PCL-passivated MAPI exhibited significantly enhanced stabilities under heat and light; XRD showed no sign of the growth of PbI₂ for the both cases during 3 h continuous heating (at 100 °C in an Ar-filled glovebox) (Figures 6B and S11) or 20 h continuous illumination under AM1.5G 1 sun condition (encapsulated by PMMA to exclude other ambient factors) (Figures 6C and S12). In contrast, the pristine MAPI exhibited the decomposition of MAPI to PbI₂ in the both circumstances as indicated by the increasing intensity of the PbI₂ (001) peak in XRD spectra. The results from these three experiments clearly confirm that the effective GB passivation by PCL enabled the comprehensive enhancement of environmental stabilities of MAPI perovskites against moisture, heat, and light by suppressing the degradation of MAPI perovskite thin films, which, in general, start and then spread from the intergranular area between MAPI grains.\(^{12}\)

The observed structural stability of PCL-passivated MAPI thin films under environmental stresses directly translates into an improved stability of the corresponding PV device performance. We monitored the PV performances of MAPI PSCs with and without a PCL additive over the 400 h, ambient-air, dark storage period (room temperature, RH = 20–40%) (Figures 6D and S13). The results show that the PCE of pristine MAPI device dropped down to 60% of its initial value in less than 150 h with the obvious degradation of J–V characteristics (Figure S14A). The MAPI PSC with PCL passivation on the other hand maintained over 90% of its initial PCE for more than 400 h storage period with a minimal degradation in J–V characteristics (Figure S14B).

Similarly, the PCL passivation enhanced the thermal stability of the PCE in MAPI PSCs; during the course of continuous heating at 85 °C in a glovebox, the MAPI PSC without PCL displayed a fast decay of PCE down to less than 60% of its initial value only after 24 h (Figures 6E and S15). In contrast, the PCL-passivated MAPI PSC maintained over 80% of its initial PCE in 24 h period and retained 65% of its initial value even after 480 h heat exposure. The comparison of J–V characteristics before and after 240 h heating clearly indicates the degradation of the pristine MAPI PSC driven by the emergence of “S-shape”, which is absent in the PCL-passivated MAPI PSC (Figure S16). The development of the S-shape in the solar cell J–V characteristics is generally caused by an increased series resistance within the device, for example, via the oxidative degradation of the electrode-active layer interface. Indeed in MAPI PSCs, a major cause of the fast PV performance loss has been largely associated with the degradation of the Spiro-OMeTAD HTL, which has been explained by the chemical reduction of Spiro-OMeTAD and subsequent reduction in its hole conductivity by the iodide ions migrating from the active perovskite layer.\(^{46,79}\) The fact that the PCL-passivated MAPI PSC did not develop the S-shape in the J–V characteristics after being subjected to environmental stresses, especially even after an extended period of heating, strongly suggests that the GB passivation by PCL in the active MAPI layer also actually suppresses the detrimental iodine ion migration, which is prone to occur more easily under the elevated temperature, from the MAPI layer to the electrode interfaces, thus, degrading the Spiro-OMeTAD HTL.

Ion Migration Suppression and Activation Energy (Eₐ) Increase of PCL-Passivated MAPI PSCs

We confirmed the suggested notion of suppressed iodine ion migration enabled by the PCL passivation by performing compositional depth-profiling via TOF-SIMS of pristine and PCL-incorporated MAPI PSCs with either Au or Ag top electrode measurements (see the Experimental Section for detailed experimental parameters such as type and energy of sputter and probe ions; sputtering times, etc.). The compositional depth-profiles of pristine and PCL-passivated MAPI PSCs with Au top electrodes subjected to the shelf storage (Ar atmosphere, room temperature, dark) for 48 h and additional thermal aging for 24 h (85 °C, Ar) are provided in Figure 7A–C. The results exhibited a lower iodine intensity in the Spiro-OMeTAD HTL region for the PCL-passivated MAPI PSC after storage, when compared with the pristine MAPI PSC (Figure 7A), while other components, such as Au, C, and PbI₂, showed relatively comparable intensities for the both pristine and PCL-passivated MAPI PSCs. The suppression of iodine migration in MAPI PSCs by the PCL GB passivation was much more pronounced under the extra thermal aging; after the additional thermal aging for only 24 h, the I⁻ counts at the Au/Spiro-OMeTAD layer interface (sputter time at 40 s) have increased by ∼50% in the pristine MAPI PSC (Figures 7B and S17A), which should lead to the rapid degradation of HTL and consequently increased series resistance, agreeing well with the observed fast PV performance decay and emergence of S-shape J–V characteristics in the pristine MAPI PSC after the thermal stress. On the contrary, the I⁻ counts at the interface in the PCL-passivated MAPI PSC have increased by only ∼25% after the identical period of thermal stress (Figures 7C and S17B). To summarize the suppression effect, we further integrated the I⁻ count in the depth range from the middle of Au electrode to the center of the Spiro-OMeTAD layer (sputter time from 20 to 85 s), which represents the overall I⁻ accumulation in the Au electrode, Spiro-OMeTAD, and their interface regions (Figure S18A). The results indicate that: (1) after the storage for 48 h in Ar, the PCL-passivated PSC featured ∼70% less I⁻ accumulation in those regions compared with the nonpassivated reference; (2) after the 85 °C heating for 24 h, the I⁻ counts increased by ∼50% in the nonpassivated PSC, while a much attenuated, ∼160% increase in the I⁻ counts was observed in the PCL-passivated PSC. Overall, these results show that the PCL passivation on MAPI GBs effectively retards the iodide diffusion from the MAPI layer toward the electrode and HTL, therefore significantly suppressing the ion migration-related PV performance degradation in MAPI PSCs.

We also find that the PCL passivation was effective in suppressing the iodide migration and accumulation toward the electrode interface in the MAPI PSC with the Ag top electrode. Ag electrodes are generally more cost effective for the practical application of MAPI PSCs but are less noble and, therefore, more vulnerable to the oxidative degradation, which can occur via the reaction with the iodide ions migrated from the active MAPI layer and the formation of an insulating AgI layer between the Ag and HTL, severely hindering the charge transport and
eventually harming the overall PV performance. Indeed, the compositional depth profile of a pristine MAPI PSC with an Ag electrode shows that a severe accumulation of iodine ions between Ag and Spiro-OMeTAD HTL after a 48 h shelf storage (Figure 7D), with the slightly increased Ag signal intensity at the Ag/Spiro-OMeTAD interface suggesting the formation of the AgI interlayer. These observations also indicate a very active diffusion of iodide ions in pristine MAPI PSCs with Ag electrodes without external driving forces.47 Now, once PCL was incorporated in the MAPI PSC, there was a clear reduction of the I\(^{-}\) accumulation and the formation of the AgI layer at the Ag/Spiro-OMeTAD interface (sputter time at 90 s), as evidenced by the ~60% decrease of I\(^{-}\) peak intensity and the disappearance of the Ag\(^{2+}\) peak, as well as the lowered I\(^{-}\) ion penetration into the Ag electrode as compared with the pristine MAPI PSC (Figure 7D). After the additional heating at 85 °C for 24 h, more I\(^{-}\) counts were observed in the Sprio-OMeTAD layer for the nonpassivated PSC (Figures 7E and S17C), and such a migration was suppressed by the PCL passivation (Figures 7F and S17D). Consistently, from the I\(^{-}\) counts integrated from the middle of the Ag electrode to the center of the Sprio-OMeTAD layer (sputter time: 45–145 s), we found that: (1) after 48 h storage in Ar, the passivated PSC showed a ~50% less accumulated I\(^{-}\) than the nonpassivated one and (2) the additional 24 h heating resulted in a further increase of I\(^{-}\) counts by ~25% in the passivated, whereas only ~3% increase of I\(^{-}\) was observed in the PCL-passivated one (Figure S18B).

We note that the iodine migration in PSCs without the external electric field is generally perceived to occur via (1) the decomposition of MAI into volatile HI formed in the MAPI layer under environmental stresses (i.e., CH\(_3\)NH\(_2\)I → CH\(_3\)NH\(_3\)+ + HI) and (2) the subsequent diffusion of iodine ions into the HTL driven by the concentration gradient and the interaction with the back contact electrode.47 The structural stabilities and compositional depth profiles we observed, with respect to various environmental stresses, suggest that the PCL GB passivation not only helped maintain the MAPI perovskite structure against the chemical decomposition but also suppressed the iodide ion diffusion through the active MAPI layer, signaling an increased ion migration activation energy within the MAPI layer by the PCL GB passivation.

We confirmed the PCL passivation-induced increase in ion migration activation energy by measuring the temperature-dependent electrical conductivities of the pristine and PCL-incorporated MAPI thin films between two lateral top electrical contacts (Figure 7G) and model them using a Arrhenius-type activation equation:14,31 the measured apparent conductivity of a given MAPI film is generally dominated by ion transport at high temperatures but at sufficiently low temperatures, the conductivity is rendered dominant by the electron transport as the physical ion motion freezes out. The long-channeled two lateral top contacts we employed also reduce the influence of electron conduction and emphasize the conduction contribution from ions.14,31 We extracted the charge transport activation energy, \(E_a\) by fitting the measured temperature-dependent conductivity (\(\sigma(T)\)) to the Arrhenius–Einstein equation: \(\sigma(T) = (\sigma_0 / T) \exp(-E_a / kT)\), with \(\sigma_0\), \(T\), and \(k\) denoting temperature-independent pre-factor, temperature, and Boltzmann constant, respectively.47 In both pristine and PCL-passivated MAPI thin films, the measured \(\sigma(T)\) when plotted against \(1/T\) in a logarithmic scale clearly display linearity with two distinctive regions of different slopes (i.e., \(E_a\)), thus confirming the validity of the model as well as two different charge transport regimes, each being dictated by electron (low temperature) and ion (high temperature) transports (Figure 7H). From the slopes in the high-temperature regime, we find that the PCL passivation of MAPI drastically increased the \(E_a\) for ion migration to 0.42 eV, from 0.2 eV in the pristine MAPI, where the \(E_a\) for the pristine MAPI is largely consistent with the previously reported values.14,31 Additionally, the PCL passivation increased the threshold temperature for the onset of ion transport (i.e., the critical temperature at which the slope changes in Figure 7H) by ~20–263 K from 243 K in the pristine MAPI. Both of these materials parameters are associated with the ion transport and provide unambiguous evidence that the PCL passivation of MAPI GBs significantly suppresses the detrimental iodide migration within the MAPI PSCs and therefore is responsible for the enhanced device PV performance stability under the tested environmental stresses.

CONCLUSIONS

We incorporated a new polymer additive PCL into MAPI perovskite thin films to passivate the perovskite GBs, where the stretched linear PCL polymer with C=O bonds along the backbone could directly coordinate with the Pb\(^{2+}\) in the MAPI perovskite crystal, thus enabling the direct backbone attachment of PCL to the MAPI and effective passivation of MAPI GB regions during the film preparation. The successful PCL GB passivation was shown to be highly effective in not only improving the optoelectronic properties and PV performance of MAPI PSCs through the effective defect passivation but also substantially enhancing the structural and performance stability of the MAPI perovskite and its PSCs against various environmental stresses. We attribute the demonstrated stability improvement of PSCs to the ability of PCL-passivated MAPI perovskites to maintain their structural integrity and, more importantly, to the suppressed ion migration toward the Sprio-OMeTAD HTL and the electrode in the regular n-i-p type PSC structure. We envision that this straightforward and effective PCL GB passivation strategy can help tackle the critical stability issues of OIHP materials and their optoelectronic devices, which in turn will advance the development and practical deployment of more environmentally stable high-performance PSCs.

ASSOCIATED CONTENT

* Supporting Information*

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.0c00995.

Details on solution preparation for spin casting; additional XPS data; SEM images of MAPI films made without the antisolvent; XPS spectra of C 1s, N 1s, and I 3d; PMIRRAS data; additional AFM images; XRD data of PCL film; additional HRTEM images; calculation of the radius of gyration (\(R_g\)) of the PCL polymer; table summarizing fitted lifetime data; statistic figures and table of \(J−V\) characteristics; plots of forward and reverse \(J−V\) characteristics with hysteresis index; additional time-dependent perovskite XRD data against moisture, heat, and light; evolution of \(J−V\) characteristics and curves in moisture and heat; additional ToF-SIMS depth profile data; and histogram summarizing integration of I\(^{-}\) counts from the ToF-SIMS data (PDF)
Acknowledges the support from the Global Research Laboratory (GRL) Program of the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (NRF-2017K1A1A2013153). Y.Z. and N.P.P. acknowledge the support from the National Science Foundation (no. OIA-1538893) and Office of Naval Research (N00014-17-1-2232). Y.Z. also acknowledges the funding support from NSF (no. OIA-1929019). The authors acknowledge the access to the facilities at Advanced Science Research Center, the City University of New York.

REFERENCES

(71) Brivio, F.; Walker, A. B.; Walsh, A. Structural and Electronic Properties of Hybrid Perovskites for High-Efficiency Thin-Film Photovoltaics from First-Principles. APL Mater. 2013, 1, 042111.

